ESPHomeMarlin2/marlin2.cpp
2024-12-28 16:58:04 +01:00

267 lines
9.6 KiB
C++

#include "marlin2.h"
#include "esphome/core/log.h"
namespace esphome {
static const char *TAG = "marlin2";
void Marlin2::add_sensor(const std::string& sName, sensor::Sensor *sens) {
sensors.push_back({sName, sens});
}
sensor::Sensor* Marlin2::find_sensor(std::string key) {
for (const auto& pair : sensors) {
if (key == std::string(pair.first)) { // Convert char* to std::string for comparison
return pair.second;
}
}
return nullptr; // Return nullptr if no match is found
}
// void Marlin2::add_text_sensor(const std::string& sName, text_sensor *sens) {
// text_sensors.push_back({sName, sens});
// }
// text_sensor* Marlin2::find_text_sensor(std::string key) {
// for (const auto& pair : text_sensors) {
// if (key == std::string(pair.first)) { // Convert char* to std::string for comparison
// return pair.second;
// }
// }
// return nullptr; // Return nullptr if no match is found
// }
void Marlin2::setup() {
MarlinOutput.reserve(256);
MarlinOutput = "";
MarlinTime.reserve(32);
PrinterState.reserve(32);
ESP_LOGD(TAG, "M155 S10");
write_str("\r\n\r\nM155 S10\r\n");
write_str("\r\n\r\nM117 Hello World!\r\n");
flush();
}
void Marlin2::update() {
while (available()) {
char c = read();
if( c == '\n' || c == '\r' ) {
process_line();
} else {
MarlinOutput += c;
}
}
if(millis() - millisProgress > 15000 && (progress != 100 progress != 0)) {
millisProgress = millis();
ESP_LOGD(TAG, "M27");
ESP_LOGD(TAG, "M31");
write_str("M27\r\nM31\r\n");
}
}
void Marlin2::process_line() {
if(MarlinOutput.size() < 3) {
MarlinOutput="";
return;
}
if(!MarlinOutput.compare("ok") || !MarlinOutput.compare(" ok")) {
MarlinOutput="";
return;
}
//Parse periodic Temperature read out message
if(
MarlinOutput.find(" T:") == 0 ||
MarlinOutput.find("T:") == 0 ||
MarlinOutput.find("ok T:") == 0 ||
MarlinOutput.find(" ok T:") == 0
) {
float ext_temperature, ext_set_temperature, bed_temperature, bed_set_temperature;
if (process_temp_msg(&ext_temperature, &ext_set_temperature, &bed_temperature, &bed_set_temperature) != 0) {
if (find_sensor("bed_temperature") != nullptr)
find_sensor("bed_temperature")->publish_state(bed_temperature);
if (find_sensor("bed_set_temperature") != nullptr)
find_sensor("bed_set_temperature")->publish_state(bed_set_temperature);
if (find_sensor("ext_temperature") != nullptr)
find_sensor("ext_temperature")->publish_state(ext_temperature);
if (find_sensor("ext_set_temperature") != nullptr)
find_sensor("ext_set_temperature")->publish_state(ext_set_temperature);
ESP_LOGD(TAG, "Bed Temperature=%.1f°C Ext Temperature=%.1f°C ", bed_temperature, ext_temperature);
}
// if(bed_set_temperature==0.0 && ext_set_temperature==0.0) {
// if(ext_temperature < 32.0 && bed_temperature < 32.0) //TODO define constants for these
// //if (find_text_sensor("printer_status") != nullptr)
// //find_text_sensor("printer_status")->publish_state("IDLE");
// else if(ext_temperature < 150.0 && bed_temperature < 55.0)
// //if (find_text_sensor("printer_status") != nullptr)
// //find_text_sensor("printer_status")->publish_state("COOLING");
// }
// if(bed_set_temperature!=0.0 || ext_set_temperature!=0.0) {
// //if (find_text_sensor("printer_status") != nullptr)
// //find_text_sensor("printer_status")->publish_state("PREHEATING");
// }
//reset string for next line
MarlinOutput="";
return;
}
//Parse Progress of the print
if(MarlinOutput.find("SD printing byte") == 0 ) {
print_progress = process_progress_msg();
if (find_sensor("print_progress") != nullptr)
find_sensor("print_progress")->publish_state(print_progress);
ESP_LOGD(TAG, "progress=%.1f", print_progress);
//reset string for next line
MarlinOutput="";
return;
}
//Parse Printitme
if(MarlinOutput.find("echo:Print time: ") == 0) {
double current=0;
double remaining=0;
if (process_print_time_msg(&current, &remaining, print_progress) != 0) {
if (find_sensor("print_time") != nullptr)
find_sensor("print_time")->publish_state(current);
if (find_sensor("print_time_remaining") != nullptr)
find_sensor("print_time_remaining")->publish_state(remaining);
ESP_LOGD(TAG, "time=%f remaining=%f", current, remaining);
}
//reset string for next line
MarlinOutput="";
return;
}
//Print Finished
if(MarlinOutput.find("Done printing") != std::string::npos) {
// //if (find_text_sensor("printer_status") != nullptr)
// //find_text_sensor("printer_status")->publish_state("FINISHED");
ESP_LOGD(TAG, "Print Finished");
print_progress = 100;
if (find_sensor("print_progress") != nullptr)
find_sensor("print_progress")->publish_state(print_progress);
if (find_sensor("print_time_remaining") != nullptr)
find_sensor("print_time_remaining")->publish_state(0);
//reset string for next line
MarlinOutput="";
return;
}
// //Print Paused
// if(MarlinOutput.find("Printer halted") != std::string::npos) {
// //if (find_text_sensor("printer_status") != nullptr)
// //find_text_sensor("printer_status")->publish_state("PAUSED");
// ESP_LOGD(TAG, "Print Finished");
// //reset string for next line
// MarlinOutput="";
// return;
// }
// //Print Stoped
// if(MarlinOutput.find("Print Aborted") != std::string::npos) {
// //if (find_text_sensor("printer_status") != nullptr)
// //find_text_sensor("printer_status")->publish_state("ABOARTED");
// ESP_LOGD(TAG, "Print Finished");
// //reset string for next line
// MarlinOutput="";
// return;
// }
ESP_LOGD(TAG, "#%s#",MarlinOutput.c_str());
MarlinOutput="";
return;
}
int Marlin2::process_temp_msg(float* ext_temperature, float* ext_set_temperature, float* bed_temperature, float* bed_set_temperature) {
float dc;
while(MarlinOutput.find(' ') != std::string::npos)
MarlinOutput.erase(MarlinOutput.find(' '), 1);
while(MarlinOutput.find("ok") != std::string::npos)
MarlinOutput.erase(MarlinOutput.find("ok"), 2);
if(sscanf(MarlinOutput.c_str() ,"T:%f/%fB:%f/%f", ext_temperature, ext_set_temperature, bed_temperature, bed_set_temperature) == 4 )
return 1;
if(sscanf(MarlinOutput.c_str() ,"T:%f/%f(%f)B:%f/%f(%f)", ext_temperature, ext_set_temperature, &dc, bed_temperature, bed_set_temperature, &dc) == 6 )
return 2;
if(sscanf(MarlinOutput.c_str() ,"T:%f/%fT0:%f/%fT1:%f/%fB:%f/%f", ext_temperature, ext_set_temperature, &dc, &dc, &dc, &dc, bed_temperature, bed_set_temperature) == 8 )
return 3;
if(sscanf(MarlinOutput.c_str() ,"T0:%f/%fT1:%f/%fB:%f/%f", ext_temperature, ext_set_temperature, &dc, &dc, bed_temperature, bed_set_temperature) == 6 )
return 4;
return 0;
}
float Marlin2::process_progress_msg(){
float current = std::stoi(MarlinOutput.substr(17));
float total = std::stoi(MarlinOutput.substr(MarlinOutput.find('/')+1));
if (total==0) {
return 0.0;
}
return (((float) current * 100.0) / (float) total);
}
int Marlin2::process_print_time_msg(double* current, double* remaining, float progress){
MarlinTime = MarlinOutput.substr(16);
float d = 0, h = 0, m = 0, s = 0;
ESP_LOGD(TAG,MarlinTime.c_str());
if (sscanf(MarlinTime.c_str() ,"%fd %fh %fm %fs", &d, &h, &m, &s)!=4) {
d=0;
if (sscanf(MarlinTime.c_str() ,"%fh %fm %fs", &h, &m, &s)!=3) {
d=0; h=0;
if (sscanf(MarlinTime.c_str() ,"%fm %fs", &m, &s)!=2) {
d=0; h=0; m=0;
if (sscanf(MarlinTime.c_str() ,"%fs", &s)!=1) {
return 0;
}
}
}
}
*current = round(((d)*24*60*60) + ((h)*60*60) + ((m)*60) + (s));
if(progress != 0.0 && progress != 100.0) {
*remaining = ((100 * *current) / progress);
}
return 1;
}
} // namespace esphome